磁力反應(yīng)釜工藝方面,焊接時影響產(chǎn)生熱裂紋的工藝因素很多,如預(yù)熱溫度、結(jié)構(gòu)剛度和工件的夾固條件等都會影響焊縫的抗熱裂度。
焊接規(guī)范。采用大電流、直線運條等,容易引起焊接應(yīng)力措施會促使熱裂紋的產(chǎn)生。故在條件允許時,應(yīng)盡量采用小電流、多層焊,以減少熱裂紋的傾向。
焊接結(jié)構(gòu)剛度較大的工件時,常采用預(yù)熱的方法。預(yù)熱一方面可以減少冷卻速度,減緩在冷卻過程中產(chǎn)生的拉伸應(yīng)力,另一方面也可改善結(jié)晶條件,減少化學和物理上的不均勻性。預(yù)熱溫度要根據(jù)鋼種的化學成分和結(jié)構(gòu)剛度的大小而定,鋼種含碳量越高,其他合金元素越多,工作剛度越大,則要求預(yù)熱溫度越高。
焊接工序。同樣的焊接性能材料,若焊接工序不同,產(chǎn)生熱裂紋傾向不同。原因是焊接次序不同產(chǎn)生的焊接應(yīng)力不同。應(yīng)采用合理的焊接次序大限度地減小焊接應(yīng)力。
焊接中焊接冷裂紋
壓力容器焊接冷裂紋大多發(fā)生在焊接接頭周邊,有時也可能擴展到焊縫中。
冷裂紋有時在焊后立即出現(xiàn),但有時要經(jīng)過幾小時、幾天、甚至更長的時間才出現(xiàn)。這些焊后經(jīng)過一段時間才出現(xiàn)的裂紋又叫延遲裂紋。延遲裂紋在制造過程中可能沒被發(fā)現(xiàn),而在使用過程中就可能造成極其嚴重的后果。所以它比一般裂紋的危害性更大。
冷裂紋從表現(xiàn)形式上看有以下幾種類型:邊界裂紋、焊道下裂紋和根部裂紋。
邊界裂紋是從焊縫與母材交界處開始,向母材中延伸。
焊道下裂紋位于焊道之下的近縫區(qū)中,沒有發(fā)展到母材表面。
根部裂紋起源于焊縫根部缺口形成的應(yīng)力集中處的熱影響區(qū)中,延伸進入母材或焊縫。
1、淬火作用
近縫區(qū)或焊縫上所形成的冷裂紋與金屬相變過程中力學性能的急劇變化和復(fù)雜的應(yīng)力狀態(tài)有關(guān)。冷裂紋主要發(fā)生在中碳鋼、高碳鋼和高強度鋼中。這類鋼的主要特點是易于淬火,使奧氏體嚴重過熱,晶粒顯著長大。由金屬學可知,晶粒粗大的奧氏體更容易淬火,轉(zhuǎn)變?yōu)榇执蟮鸟R氏體組織,使近縫區(qū)金屬性能變壞,特別是塑性下降,脆性增加。這時在復(fù)雜的焊接應(yīng)力的作用下,就會發(fā)生冷裂紋。
2、氫的作用
在焊接高溫下,一些含氫的化合物分辨析出原子狀態(tài)的氫,大量的氫溶解于熔池金屬中。隨著熔池溫度的下降,氫在金屬中的溶解度急劇降低。但焊接熔池的冷卻速度很快,氫來不及逸出而殘留在焊縫金屬中。氫在奧氏體和鐵素體中的溶解度及擴散能力也有顯著差別。
通常焊縫金屬的碳當量總比母材低一些,因而焊縫在較高溫度下就發(fā)生奧氏體分解,這時近縫區(qū)還尚未發(fā)生奧氏體轉(zhuǎn)變。由于焊縫金屬中氫的溶解度突然下降。隨著溫度的下降,近縫區(qū)的奧氏體發(fā)生轉(zhuǎn)變時,溫度已經(jīng)很低,氫的溶解度更低,而且擴散能力也已很微弱。于是氫便以氣體狀態(tài)進到金屬的細微孔隙中并造成很大的壓力,使局部金屬產(chǎn)生很大的應(yīng)力,從而形成冷裂紋。
歡迎您關(guān)注我們的微信公眾號了解更多信息